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Problem 2.35

(a) Fill in the details of the arguments leading from the equation of motion (2.52) to Equations
(2.57) and (2.58) for the velocity and position of a dropped object subject to quadratic air
resistance. Be sure to do the two integrals involved. (The results of Problem 2.34 will help.)
(b) Tidy the two equations by introducing the parameter τ = vter/g. Show that when t = τ , v
has reached 76% of its terminal value. What are the corresponding percentages when t = 2τ and
3τ? (c) Show that when t ≫ τ , the position is approximately y ≈ vtert+ const. [Hint: The
definition of coshx (Problem 2.33) gives you a simple approximation when x is large.] (d) Show
that for t small, Equation (2.58) for the position gives y ≈ 1

2gt
2. [Use the Taylor series for coshx

and for ln(1 + δ).]

Solution

Part (a)

Draw a free-body diagram for a mass falling down in a medium with quadratic air resistance. Let
the positive y-direction point downward.

Apply Newton’s second law in the y-direction.∑
Fy = may

Let vy = v to simplify the notation.

mg − cv2 = m
dv

dt
(2.52)

This is Equation (2.52) on page 60. The terminal speed occurs when the velocity reaches
equilibrium.

mg − cv2ter = m(0)

Solve for vter, the terminal velocity.

vter =

√
mg

c

To get v, solve Equation (2.52) by separating variables.

c
(mg

c
− v2

)
= m

dv

dt

c

m
dt =

dv
mg
c − v2
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Integrate both sides definitely, assuming that at t = 0 the velocity is zero.
� t

0

c

m
dt′ =

� v

0

dv′

mg
c − v′2

(1)

Make the following substitution in the integral on the right side.

v′ =

√
mg

c
tanh θ

dv′ =

√
mg

c
sech2 θ dθ

Consequently, equation (1) becomes

c

m
(t− 0) =

� tanh−1

(
v√
mg
c

)

tanh−1

(
0√
mg
c

)
√

mg
c sech2 θ dθ

mg
c (1− tanh2 θ)

c

m
t =

1√
mg
c

� tanh−1

(
v√
mg
c

)
0

sech2 θ dθ

sech2 θ

=

√
c

mg

� tanh−1

(
v√
mg
c

)
0

dθ

=

√
c

mg

tanh−1

 v√
mg
c

− 0



=

√
c

mg
tanh−1

 v√
mg
c

 .

Solve for v. √
cg

m
t = tanh−1

 v√
mg
c



tanh

(√
cg

m
t

)
=

v√
mg
c

Therefore, the velocity in a medium with quadratic air resistance is

v(t) =

√
mg

c
tanh

(√
cg

m
t

)
.
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To get an equation involving the position, replace v with dy/dt.

dy

dt
=

√
mg

c
tanh

(√
cg

m
t

)
Separate variables to solve for y.

dy =

√
mg

c
tanh

(√
cg

m
t

)
dt

Integrate both sides definitely, assuming that at t = 0 the position is zero.

� y

0
dy′ =

� t

0

√
mg

c
tanh

(√
cg

m
t′
)
dt′

y − 0 =

√
mg

c

� t

0
tanh

(√
cg

m
t′
)
dt′ (2)

Make the following substitution in the remaining integral.

u =

√
cg

m
t′

du =

√
cg

m
dt′ → dt′ =

√
m

cg
du

Consequently, equation (2) becomes

y(t) =

√
mg

c

� √
cg
m

t

0
(tanhu)

(√
m

cg
du

)

=
m

c

� √
cg
m

t

0
tanhu du

=
m

c
ln coshu

∣∣∣∣
√

cg
m

t

0

=
m

c
ln

cosh
√

cg
m t

cosh 0
.

Therefore, the position in a medium with quadratic air resistance is

y(t) =
m

c
ln

[
cosh

(√
cg

m
t

)]
.
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Part (b)

In terms of vter =
√
mg/c and τ = vter/g, the velocity is

v(t) = vter tanh

(
g

vter
t

)
= vter tanh

(
t

τ

)
, (2.57)

and the position is

y(t) =
v2ter
g

ln

[
cosh

(
g

vter
t

)]
= vterτ ln

[
cosh

(
t

τ

)]
. (2.58)

These are Equations (2.57) and (2.58) on page 61. If t = τ , then the velocity is about 76% of the
terminal velocity.

v(τ) = vter tanh 1 ≈ 0.76vter

If t = 2τ , then the velocity is about 96% of the terminal velocity.

v(2τ) = vter tanh 2 ≈ 0.96vter

If t = 3τ , then the velocity is about 99.5% of the terminal velocity.

v(3τ) = vter tanh 3 ≈ 0.995vter

Part (c)

If t ≫ τ , then

y(t) = vterτ ln

[
cosh

(
t

τ

)]

= vterτ ln

[
exp

(
t
τ

)
+�����exp

(
− t

τ

)
0

2

]

≈ vterτ ln

[
1

2
exp

(
t

τ

)]

≈ vterτ

[
ln

1

2
+ ln exp

(
t

τ

)]

≈ vterτ

(
− ln 2 +

t

τ

)
≈ −vterτ ln 2︸ ︷︷ ︸

const

+ vtert.
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Part (d)

The Taylor series for hyperbolic cosine and natural logarithm about x = 0 are as follows.

coshx = 1 +
x2

2!
+

x4

4!
+

x6

6!
+ · · ·

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · ·

If t is very small (t ≪ 1), then the hyperbolic cosine function can be reasonably approximated by
the first few terms of its Taylor series about zero. Since the goal is to get y ≈ 1

2gt
2, only keep the

first two terms of the series. The higher-order terms are negligible compared to the first two.

y(t) = vterτ ln

[
cosh

(
t

τ

)]

≈ vterτ ln

[
1 +

1

2!

(
t

τ

)2
]

≈ vterτ ln

(
1 +

t2

2τ2

)
Since t is very small, t2/(2τ2) is close to zero, so the natural logarithm can be reasonably
approximated by the first few terms of its Taylor series about zero. Since the goal is to get
y ≈ 1

2gt
2, only keep the first term of the series. The higher-order terms are negligible compared to

the first.

y(t) ≈ vterτ

(
t2

2τ2

)

≈ 1

2

(vter
τ

)
t2

≈ 1

2
gt2
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